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This examination consists of three problems, with in total 15 parts. The 15 parts carry
equal weight in determining the final result of this examination.
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PROBLEM 1
Two observers, A and B, are falling freely in orbits of constant r in the Schwarschild-metric:
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The orbits are in the plane 6 = 7/2, and have radius 74 = 4m, 75 =4*/°m. Ont=0 A
and B pass through ¢ = 0.
For circular, timelike geodesics with radius r the following conditions hold:
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where the " indicates differentiation with respect of the eigentime.
13 Calculate the coordinate time At4 that A needs for one orbit.
1.2  How much time does A need according to his own clock for one orbit?

1.3  The clock of B is lit and can be read by A when they pass each other. What is the
time difference that A sees on the clock of B between two consecutive passages of
B through the point ¢ = 07




1.4  How much time has passed on A’s clock while B makes one orbit?

1.5 A starts his rocket engine and stops at the point with coordinates r = 4m, 6 =
7/2, ¢ = 0. He then repeats the measurements of part (1.3) and (1.4). What are
the results now?

PROBLEM 2

The Robertson-Walker metric for k¥ = 1 can be written in the form

ds® = dt* — a(t)? {dx* + sin® x (d6? + sin®0d4?) } .
Using the energymomentum tensor of an ideal fluid the Einstein equations imply the
folowing relations between a(t) and the functions p(t) (energydensity) en p(t) (pressure):
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The " indicates differentiation with respect to t, kK = —87G.
We consider a Friedmann universe with ultrarelativistic matter p = 3p.

2.1  Show that pa? is constant.

2.2 Determine a as a function of ¢, with the boundary condition that at ¢ = 0 we have
g=10

2.3 Let pg en ag be the values of the functions p and a at time ¢ = t5. Show that this
universe has a finite lifetime, and determine this lifetime as a function of pg and ag.

2.4  Determine the trajectory of lightrays with 6 = ¢ = 0.

2.5 A lightray is emitted at the origin of this universe at ¢ = 0, a = 0, from the point
with coordinate y = 0. What is the value of the coordinate x when the value of a

is again zero?

PROBLEM 3

Consider a manifold M with metric g,,, and a symmetric metric connection T'. Covariant
derivatives will be indicated by semicolon (;) and ordinary derivatives by a comma (,).
Covariant derivatives of vector fields take on the form:
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where the connection I is given by

Fﬁu = '%gpg (aung -+ 61/.9;4/: = pg;u/) . @D

All covariant derivatives below are with respect to the connection (3.1).
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Show that g,.,;, = 0.

On the manifold M we have vector fields A and j satisfying Maxwell’s equations:
Rl — ot (3.2)
where F,, = Ay, — Ay;,. Show that also

Fu=Avu—Apy.
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and g = det gu,. Show that the Maxwell equations (3.2) are equivalent to
ERS =T (3.3)

Use the fact that 8,9 = g 9°° Ougpo-

Show that the Maxwell equations in the form (3.3) imply
J'u=0.

Use the result of (3.4) to show that j#,, = 0.




